Exercise 3

Find the linearization $L(x)$ of the function at a.

$$
f(x)=\sqrt{x}, \quad a=4
$$

Solution

Start by finding the corresponding y-value to $x=\pi / 6$.

$$
f(4)=\sqrt{4}=2
$$

Then find the slope of the tangent line to the function at $x=4$ by computing $f^{\prime}(x)$,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} \sqrt{x} \\
& =\frac{1}{2} x^{-1 / 2} \\
& =\frac{1}{2 \sqrt{x}},
\end{aligned}
$$

and plugging in $x=4$.

$$
f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4}
$$

Now use the point-slope formula to obtain the equation of the line going through $(4,2)$ with slope $1 / 4$.

$$
\begin{aligned}
y-f(4) & =f^{\prime}(4)(x-4) \\
y-2 & =\frac{1}{4}(x-4) \\
y-2 & =\frac{1}{4} x-1 \\
y & =\frac{1}{4} x+1
\end{aligned}
$$

Therefore, the linearization of the function $f(x)$ at $a=4$ is

$$
L(x)=\frac{1}{4} x+1 .
$$

Below is a plot of the function and the linearization at $a=4$ versus x.

